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Abstract
This article reports on a study aimed to elucidate the complex etiology of post-traumatic stress (PTS) in a longitudinal
cohort of police officers, by applying rigorous computational causal discovery (CCD) methods with observational data.
An existing observational data set was used, which comprised a sample of 207 police officers who were recruited
upon entry to police academy training. Participants were evaluated on a comprehensive set of clinical, self-report,
genetic, neuroendocrine and physiological measures at baseline during academy training and then were re-evaluated
at 12 months after training was completed. A data-processing pipeline—the Protocol for Computational Causal
Discovery in Psychiatry (PCCDP)—was applied to this data set to determine a causal model for PTS severity. A causal
model of 146 variables and 345 bivariate relations was discovered. This model revealed 5 direct causes and 83 causal
pathways (of four steps or less) to PTS at 12 months of police service. Direct causes included single-nucleotide
polymorphisms (SNPs) for the Histidine Decarboxylase (HDC) and Mineralocorticoid Receptor (MR) genes, acoustic startle
in the context of low perceived threat during training, peritraumatic distress to incident exposure during first year of
service, and general symptom severity during training at 1 year of service. The application of CCD methods can
determine variables and pathways related to the complex etiology of PTS in a cohort of police officers. This knowledge
may inform new approaches to treatment and prevention of critical incident related PTS.

Introduction
This article reports on a study that applies computa-

tional causal discovery (CCD) methods to a unique
longitudinal observational data set, to determine causal
factors for post-traumatic stress (PTS) related to police
duty critical incident exposure. The identification of
causal factors controlling the expression of PTS is
necessary to advance intervention for PTS. Advances in
intervention requires research that identifies causal fac-
tors1,2, but the scientific literature that would inform the
identification of causes are almost exclusively based on
the application of correlational methods to observational
data. Causal inferences from such research will frequently

be in error1,2. Experimental etiologic research can infer
causes, but such research—for all practical purposes—
cannot be conducted with humans (e.g., randomizing a
subject to a trauma condition). Animal experimental
studies have provided important causal knowledge about
such aspects as fear conditioning and attachment systems
likely involved in PTS3,4. There are, however, obvious
problems with exclusively relying on animal studies to
derive knowledge on causal factors5,6. Thus, advances in
intervention will need to come from establishment of
alternative methods to experimental research to deter-
mine causal factors. The present study was conducted to
explore application of CCD methods for this purpose.
There is an emerging literature identifying the importance
of this problem of causal inference for research in psy-
chiatry7–10.
There is an extensive literature validating the capacity of

CCD methods, including an empirical literature demon-
strating that these methods can accurately detect true
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causes within observational data sets, when true causes
were previously known: and a literature providing rigor-
ous mathematical proofs of these methods for causal
inference1,2,11–16. CCD methods have yielded important
advances in non-psychiatric medical fields and have been
successfully applied in psychiatric research, to large extent
by our group17–27. Although there are strong reasons to
believe that application of CCD methods to psychiatric
research can lead to similar advances, it must be
acknowledged that these methods have rarely been
applied to psychiatric data. Accordingly, findings yielded
from research employing CCD methods in psychiatry
should be appraised with a commensurate level of scru-
tiny. The present study is among the first to apply CCD
methods to discover causal factors for PTS. Next, we
provide a brief, non-technical description of CCD meth-
ods for readers who may be unfamiliar with the literature
upon which they are based. A more detailed description is
provided in Supplementary Material 1.

Causal inference from observational data
The following definitions of direct and indirect causa-

tion is explicitly or implicitly used by all state-of-the-art
CCD algorithms and is consistent with what is considered
to be causal in biomedicine (“Defining direct and indirect
causation” subsection). The capacity of these methods to
infer the causal processes generating the data that is
observed (“Mapping of data to the causal...” subsection),
follow from these definitions, as will be described1,2.

Defining direct and indirect causation
Definition 1 (operational criterion for causation)
Assume that a variable A can be manipulated by a

hypothetical experimenter to take values, each one
denoted as ai. Assume also that the experimenter can
manipulate A (e.g., give a drug to a patient or not, where
A stands for type of treatment received). We denote the
manipulation of A by the experimenter to take value aj, as:
do(A= aj). If the experimenter assigns values to A
according to a uniformly random distribution over values
of A, and then observes P(B|do(A= ai)) ≠ P(B|do(A= aj))
for some i and j, (and within a time window dt), then
variable A is a cause of variable B (within dt). Intuitively,
P(B|do(A= ai)) ≠ P(B|do(A= aj)) means that manipulat-
ing A (i.e., do(A= ai) or do(A= aj)) results in a different
distribution of variable B in the manipulated population.

Definition 2 (direct and indirect causation)
Assume that a variable A is a cause of variable B

according to the operational criterion for causation in
definition 1. A is an indirect cause for B with respect to a
set of variables V, if and only if A is not a cause of B for
some assignment (by manipulation) of values of V – {A, B},
otherwise A is a direct cause of B. Variables representing

direct causes serve to mediate the relationship between an
indirect cause and the effect.

Mapping of data to the causal process generating the data
(i.e., inferring causes from observational data)
Notice that the above definition hinges on experimental

data. To be able to infer causality from observation data,
we need to map the observation data to the causal process
that generates the data. The existence of a set of causal
relationships of the type “A causes B” in the vast majority
of distributions (so-called “Faithful” distributions) guar-
antee that specific conditional dependencies and inde-
pendencies will be observed in the data in a way that
directly corresponds to causal mechanisms of the process
that generates the data. For example, consider the situa-
tion that A directly causes B, B directly causes C, and no
other direct causal relationship exists among them, and
that the distribution is Faithful. In this case, all variables
are mutually correlated (or broadly speaking dependent, if
correlation is not the most appropriate form of measured
association). Also, A will become independent of C if we
condition on B (i.e., knowing the values of B blocks the
association/dependency/information transfer between A
and C). This is an application of the Causal Markov
condition (CMC), a distributional assumption that allows
us to infer all statistical independencies observed in data if
we know the causal process generating the data. The
distributional assumption of the Causal faithfulness con-
dition (CFC) says that all independencies in the data are
represented by the causal graph representing the causal
process combined with the CMC. If the CMC and the
CFC hold, it follows that all dependencies and inde-
pendencies in the data correspond precisely to (i.e., form a
perfect map of) the true causal structure that generated
the data. In other words, an algorithm (or analyst if the
number of variables is really small) can measure depen-
dencies and independencies in the data and correctly infer
the existence or non-existence of precise direct and
indirect causality without conducting experiments. The
Combination of CMC+CFC constitutes the aforemen-
tioned distribution assumption of Faithfulness. The pre-
sence of non-faithful distributions can undermine the
accuracy of causal inference. Fortunately, it is known that
among all possible distributions, non-faithful distributions
are exceedingly rare (Lebesque measure 0)28 and of the
few cases where faithfulness is violated, special algorithms
are available to help manage this problem29.

Discovering the most parsimonious predictive and
simultaneously local causal relations in the data
A particularly powerful discovery tool—and one cen-

trally related to methods we apply—concerns the Markov
boundary of a target outcome variable. The Markov
boundary provides the smallest set of variables that
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achieves maximum possible predictive accuracy of the
target variable (most parsimonious prediction) under
broad assumptions about classifiers used, data distribu-
tion, and error metrics of interest. The Markov boundary
not only enables most parsimonious prediction, it also
possesses a causal function since, in the majority of dis-
tributions, and when confounding is restricted, it includes
the direct causes, direct effects and direct causes of the
direct effects of the target variable1,2,11–13.

Terminology
The previous discussion—following the Computational

Causal Discovery literature—uses the term “cause” or
“causal factor” to connote any variable that provides the
potential to change the distribution of an outcome vari-
able, should the distribution of the “causal” variable be
changed. In contrast, change in distribution of an out-
come from change in distribution of a non-causal corre-
late or predictor of the outcome, is not possible. Since our
study is not designed to test actual change in distribution
of outcome from change in causal factor, such factors may
be more accurately described as “putative causes” or
“putative causal factors” and such a qualification should
be understood whenever we use the term “cause” or
“causal factor” in this article.

Causality and disorders of complex etiology
The accurate identification of direct and indirect causal

factors for outcomes of interest provides the potential to
reveal novel intervention approaches, targeting the iden-
tified putative causal factors. The utility of this knowledge
may, however, be limited when the outcome studied has a
complex etiology (almost certainly true of PTSD and
many other psychiatric disorders)25,30–33. For such dis-
orders, it is expected that there will be a very large
number of interacting causal pathways (of linked indirect
and direct causes) to influence the expression of the dis-
order. Thus, targeting only a small proportion of these
causal factors/pathways may not result in successful
intervention on the disorder (as many causal factors will
remain to influence the disorder). However, knowledge
about the complexity of a disorder may reveal unique
opportunities for intervention. In a complex system, a
small number of causal factors will influence a large
proportion of causal paths, and most causal factors will
influence a small proportion of paths34–37. We integrate
methods designed to leverage this opportunity by
detecting those putative causal variables with influence
over the greatest proportion of paths into the target
outcome variable. We emphasize that contrary to meth-
ods designed to discover specific direct and indirect
causes to a target outcome variable—that provide guar-
antees for correctness under well specified conditions—
network connectivity-based approaches for determining

putative causal variables with broadest influence are
presently a heuristic strategy. This heuristic however has
the advantage that it describes higher-level properties
than methods designed to only infer direct and indirect
putative causes.
In the research described next, we apply a specific

protocol—the Protocol for Computational Causal Dis-
covery in Psychiatry (PCCDP)—to implement the causal
discovery methods just described, to observational data
sets used in the field. This protocol was applied to dis-
cover a complex network revealing the causes and effects
of PTS in police officers using a particularly compelling
observational data set for this purpose38,39. This data set
contains prospective information on a diversity of risk
variables collected prior to critical incident exposure,
from the peritraumatic period during the first year of
police service, and in the post trauma period, one year
after the start of police service. Several important findings
on risk for PTS were published from this data set
including relations between pre-trauma salivary 3-
methoxy-4-hydroxyphenylglycom (MHPG) responses to
experimental stress challenge during training and peri-
traumatic dissociation and PTS symptoms during police
service40, between cortisol awakening response during
training and peritraumatic dissociation and acute stress
responses during police service41, and between workplace
stress42, fear-potentiated acoustic startle43, positive and
negative emotions during training44, cortisol responses to
experimental stress challenge during academy training45,
killing or seriously injuring another person in the line of
duty46, trait anger47, alexithymia48, and gender and eth-
nicity49 with PTS symptoms. None of these findings were
based on methods that could enable causal inference. Of
note: PCCDP is an updated version of a previously pub-
lished protocol called the Complex Systems-Causal Net-
work (CS-CN) method25.

Methods
Participants
The NYU/UCSF Police Prospective Longitudinal Study

(NYU/UCSF-PPLS) was conducted by Marmar and col-
leagues in a study to understand risk for PTS in a pro-
spective longitudinal cohort of police academy recruits
from four police departments (New York City, San
Francisco, Oakland, San Jose)38,39. All police academy
recruits were eligible for inclusion in the study, except
those who had previously served in the military, law
enforcement, or emergency services. Informed consent
was obtained from all subjects. Procedures were approved
by NYU Medical Center and University of California, San
Francisco, Institutional Review Boards.
Details on the procedure used in the collection of data

and on the variables measured can be found in Supple-
mentary material 2, including Supplementary Table S1
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indicating measurement of genes. To briefly summarize
this procedure: on entry to police academy training,
subjects were recruited and following informed consent, a
baseline assessment battery of self-report measures was
administered in person or by mail to subjects, consisting
of measures of variables hypothesized to indicate risk for
PTS from prior to Police Academy training and of risk
variables on symptom expression and functional status
related to adjustment to the police force. At 12-month
after completion of Police Academy training, this assess-
ment battery was repeated, excluding those scales mea-
suring pre-police academy risk. This 12-month follow-up
assessment also included measures of critical incident
trauma exposure, peritraumatic responses to such critical
incidents, and assessments of the outcomes of PTS and
depression. During police academy training, and after
baseline assessments were completed, subjects completed
psychophysiologic and neuroendocrine assessments, and
genetic testing.
Because this study is focused on the etiology of PTS,

data on a sub-sample of officers (n= 207) who were
exposed to at least 1 duty-related life-threatening event in
the first 12 months of police service was used (from the
larger sample of police academy recruits, n= 400).
Demographic differences between subjects in our sub-
sample and the larger sample were compared. No differ-
ences were found on the demographic characteristics of
age, gender, education, or marital status. However,

differences were found on ethnicity (χ2= 7.2, P= 0.007
two-sided), with the proportion of “Caucasian” being
lower in the full sample (38% vs. 43%). The difference in
ethnicity would not be expected to confound any
observed associations since the conditional independency
tests within our methods—detailed below—would first
exclude ethnicity (and all other possible measured con-
founders) before concluding that any causal relation is
present in the data.
Collection of genetic data began after the study was

initiated, and thus genetic data were measured for a
selected sub-sample of subjects (n= 157). Hence, the
etiological relationship among genetic and behavioral
measures can only be determined for this sub-sample.

Procedure
PCCDP follows a specific set of steps that integrates an

investigator’s prior knowledge in the process of CCD, to
discover specific causes and effects of psychiatric dis-
orders of interest. These steps are described next and
illustrated in Fig. 1.

Apply prior knowledge to an observational data set to
create a data subset based on hypothesized causes and
effects of a designated target outcome variable
As illustrated in Fig. 1, PCCDP allows investigators to

apply their prior knowledge about the phenomenon under
study to identify variables and relations considered for

Fig. 1 The Protocol for Computational Causal Discovery in Psychiatry (PCCDP). Procedures used to discover causes, from the NYU/UCSF Police
Prospective Longitudinal Study data set.
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analysis. Broadly, PCCDP considers two types of prior
knowledge.

Prior knowledge on the variables to include in the analysis
Although, an important advantage of the algorithms

used within PCCDP is their capacity to consider large
numbers of variables in samples of modest size, thus
minimizing the considerable risk of missing direct and
indirect causes, and failing to analyze hidden common
causes that would confound the results of causal dis-
covery. It is also advantageous to be guided by the lit-
erature in one’s field, to exclude variables from
consideration: (a) when there is no reason to believe the
variable would have any relation to the target (e.g., For
PTS target: subject’s color preference, brand of subject’s
personal motor vehicle), (b) when multiple variables
measure the same construct (e.g., a data set contains four
similar variables measuring depression). This first appli-
cation of prior knowledge (i.e., variable consideration)
seeks to constrain the introduction of superfluous infor-
mation into the process of causal modeling, and to
minimize potential violations of faithfulness.

Prior knowledge on the relationship between variables
Prior knowledge on the relationship between variables,

such as (i) time order between variables based on
knowledge of when a variable was measured or would
have exerted its effect or, (ii) causal relationships that have
been established from prior experimentation. This second
application of prior knowledge seeks to leverage known
facts about relationships, in the process of causal model-
ing (e.g., fact that causal relations cannot go backwards in
time; fact that experiments can determine causal
relations).
In the present study, prior knowledge was applied by

searching the NYU/UCSF-PPLS data set to select vari-
ables/relations for inclusion in a data subset for compu-
tational analysis, as follows:
1. Selection of the outcome target: The NYU/UCSF-

PPLS data set was reviewed for variables that best
measured PTS in a sufficient number of subjects.
The primary target variable used in this study is PTS
Symptom Severity (PTS Sev) as measured by the
total score of the PTSD Checklist (PCL) at
12 months of Police Duty50.

2. Selection of hypothesized cause and effect variables:
One hundred and forty-eight variables were pre-
selected based on their plausibility of representing
causes or effects of PTS Sev, and absence of
information equivalency with included variables.
Such variable pre-selection was guided by
prominent theory in the field30–33. Variables were
chosen to cover a diversity of modalities including
genetic, physiologic, neuroendocrine, developmental,

social, family, emotional, behavioral, and cognitive
variables. Details on the measurement of the 148
variables in the data set are provided in
Supplementary material 2.

3. Designation of time époques for measured variables:
The temporal order of variables designated for the
present analysis was based on the order in which they
were believed to exert their influence. In the present
study variables were categorized into seven time
époques: (1) constitutional (demographic and family
history variables collected on entry to Police
Academy), and genetic variables assessed during
Police Academy training, (2) childhood (variables
collected on entry to the Police Academy, concerning
subject’s childhood), (3) entry to Police Academy
(i.e., variables collected on entry to the Police
Academy about subject’s symptoms and functioning
related to adjustment to the Police Academy), (4)
during Police Academy training (psychophysiological
and neuroendocrine variables measured after
baseline self-report assessment was completed, but
before the end of Police Academy training), (5)
critical incident exposure during the first 12 months
of police service (measured at 12-month follow-up),
(6) peritraumatic period (i.e., self-reports of
responses to duty-related critical incidents during
the first 12 months of police service, measured at 12-
month follow-up), (7) post 12 months of Police
service following completion of Police Academy
training (self-reports of symptoms and functioning,
including depression and PTS, measured at 12-
month follow-up).

The resulting data subset was then input for computa-
tional processing, along with a defined variable table,
describing each variable, its numeric type (e.g., ordinal,
cardinal) and its time époque. Importantly, no discretion
over the processing of variables was allowed, once the
data subset and variable table was entered as input. Each
variable in the data subset can be found as in the original
NYU/UCSF-PPLS data set, variables were also renamed
for the sake of clarity and graph visualization. The list of
variables and their corresponding original names and
designated time époques can be found in Supplementary
material 3.

Apply computational causal discovery methods to the data
subset to determine a partially directed causal network
Causal edge detection is accomplished by integrating a

well-validated set of algorithms called GLL-PC11,12, which
discover causal edges by using tests of conditional inde-
pendence among variables in the data subset with the
semantics/definition of a causal edge offered in the
Introduction1,2. GLL-PC employs local causal discovery
and is followed by local-to-global algorithms from the
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best-of-class local to global learning (LGL) families1,2,11–14.
As shown in Fig. 1, GLL-PC processes the data subset to
create a causal network via the inference of all causal
relationships consistent with the data. In addition to
identifying putative causal relationships, the inferred net-
work can also be used for optimal predictive modeling via
elicitation of the Markov boundary for each of the vari-
ables. As described, the Markov boundary of a given
variable, provides the smallest set of measured variables
that achieves maximum possible predictive accuracy and is
also most parsimonious under broad assumptions about
classifiers used, data distribution, and error metrics of
interest11–13. Because GLL-PC is provided with time
époque information, it is also able to provide direction
between many of the variables. Within PCCDP, GLL-PC is
programmed to draw direction from variables forward in
time (when time order is known). This procedure yields a
partially directed causal network of nodes (variables) and
the edges (bivariate causal relations) that connect them.
For this study, GLL-PC was applied with the following
fixed parameters: a max-k (maximum conditioning set
size) of 3, and a p-value threshold of 0.05.

Maximize knowledge on directionality of causal edges to
determine the Global Causal Network Model of PTS
To orient any remaining undirected edges (i.e., edges

between variables from same time epoque), PCCDP
applies techniques derived from the PC algorithm2. Using
“sepsets” from the conditional independence tests per-
formed by GLL-PC, PC’s edge orientation rules are
employed to orient Y-structures (e.g., A → C ← B) and
propagate orientation of appropriate edges in the given
undirected or partially directed causal network. Obser-
vational data can only resolve causal directions up to the
Markov equivalence class, i.e., the set of causal graphs that
share the same edge orientations consistent with the data,
leaving the rest as unknown2; this procedure results in the
Global Causal Network Model of PTS (Fig. 1).

Find the direct causes and effects of the target outcome
variable to determine the Local Causal Network Model of
PTS
The previous computational steps create a Global

Causal Network Model based on observed putative causal
influences between all variables in the data subset. This
Global Causal Network Model contains variables within
what is called the local causal neighborhood of the target
outcome variable (e.g., PTS Sev), and also the local causal
neighborhoods of all variables in the data subset (in order
to learn pathways of sequences between indirect and
direct causes to the target outcome variable). PCCDP also
reveals the Markov boundary for each variable since the
latter comprises the direct causes, direct effects, and the
direct causes of the direct effects of each variable,

including PTS Sev. This Local Causal Network Model for
PTS Sev is one of the two main “outputs” of PCCDP
(Fig. 1).

Find the direct and indirect causes with influence over the
largest proportion of pathways to PTS
In general, once the global causal graph is discovered, a

variety of graph search algorithms combined with quan-
titative causal inference can be used to derive sets of
variables that separate a cause of PTS Sev from PTS Sev
or that achieve a desired degree of influence on PTS Sev.
Such calculations are very expensive and even prohibitive
for large and complex networks, however. In the present
work, we instantiate the PCCDP protocol with a heuristic
strategy as follows: in order to determine the putative
causal variables with influence over the largest proportion
of pathways to the target, a subnetwork of all pathways in
the Global Causal Network was examined that terminate
at the designated target variable, restricted to four path-
lengths or less (to exclude variables with distal influence
on the target). PCCDP evaluates (heuristically) the effect
of intervention on causal variables by determining the
number of intact pathways to the target that become
eliminated, when each putative causal variable is deleted.
PCCDP produces, as output, a rank order of causal vari-
ables by the proportion of pathways to the target variable
eliminated, when specific causal variables are deleted
(Fig. 1).

Additional safeguards
Determining stability of causal edges through boot-
strapping procedures PCCDP integrates a bootstrap-
ping analysis to determine the stability of the resulting
Global Causal Network Model with respect to sampling
variability. The data subset was bootstrapped 100 times
and Global Causal Network Models were generated for
each iteration. The stability of an individual edge was
calculated as the percent (%) of bootstrapped networks in
which it was detected.

Software and tools
PCCDP was programmed in MATLAB R2016a51. Post-

analysis network visualization was conducted in Cytos-
cape 3.6.1.52. Network pathway analysis was conducted in
part using the Cytoscape plugin, Pathlinker53.

Results
A Global Causal Network Model of 146 nodes and 345

edges was found (two nodes were disconnected from the
network). Of the 345 identified edges, 125 were oriented
based on time époque, and 201—from the same time
époque—were oriented by the edge orientation proce-
dures of the PC Algorithm. Thus, 326 edges (94%) were

Saxe et al. Translational Psychiatry          (2020) 10:233 Page 6 of 12



oriented by the PCCDP method and 19 edges (6%)
remained unoriented. The complete edge list and edge
stability estimated from the bootstrapping analysis, is
provided in Supplementary material 4.

Direct causes and effects of PTS (Local Causal Network
Model)
In Fig. 2, we present a visualization of all second-degree

neighbors of the PTS Sev variable (i.e., variables within
two “steps” from PTS Sev), including a subset of these
variables that are defined by the Local Causal Network
Model (i.e., the Markov boundary of PTS Sev, represented
by the red dotted line in Fig. 2). These Markov boundary
variables reflect the minimal set of information required
to predict the value of the target as accurately as the whole
of data support this prediction. Conditioned on these
nodes, PTS Sev is rendered independent of the rest of the
nodes in the network. Figure 2 shows the direct causes,
direct effects, and direct causes of the direct effects of PTS
Sev (i.e., it’s Markov boundary). This network is config-
ured to a hierarchical layout to best visualize the flow of
causal influence.
This visualization is informative because it includes

variables within the Local Causal Network Model and
variables immediately “upstream” and “downstream” from
many of these variables. The numeral in parenthesis
within each node indicates the time époque (1–6) of the
variable represented by the node. To make this visuali-
zation as clear as possible, we removed 6 nodes that were

not on any causal pathway to PTS Sev—or within its
Markov boundary. The PTS Sev node is colored red.
Nodes colored orange represent the five direct putative
causal variables to PTS Sev. Nodes colored purple
represent either the one direct effect of PTS Sev
(depression at 12 months) or the direct causes of this one
direct effect. The red dashed line represents the Markov
boundary of PTS Sev variable and, accordingly contains
all its direct causes (orange nodes), its direct effects
(purple nodes) and the direct causes of its direct effects
(purple nodes). Nodes represented in diamond shape
indicate variables with influence on the greatest propor-
tion of causal paths to PTS Sev within the entire Global
Causal Network that were also included in the set of
nodes (Fig. 2). More detail on these nodes are
described next.

Direct and indirect causes on the largest proportion of
pathways to PTS
Searching the entire Global Causal Network Model for

all paths of four steps or less to PTS Sev, yielded 83
unique paths. Modeling removal of nodes to determine
those with influence on the greatest proportion of these
83 pathways, revealed 10 variables with such influence.
Many nodes are part of multiple paths. We heuristically
evaluate the effect of intervention on each node by
computing the proportion of paths eliminated when a
node is deleted from the network. In Fig. 3, a rank order of
these 10 variables along with the proportion of the 83

Fig. 2 The second-degree Neighborhood of PTS Sev, including its Local Causal Network Model/Markov boundary. Putative causes and
effects within two “steps” of PTS Sev.
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pathways that a given variable was found to influence, are
provided. Seven of these 10 variables were contained
within the second-degree neighborhood of PTS Sev
(represented by diamond shape in Fig. 2). The remaining
three variables lie outside the second-degree neighbor-
hood and, accordingly, are not shown in Fig. 2. A list of
the 83 pathways to PTS Sev is provided in Supplementary
material 5.

Discussion
The overarching aim of our study was to apply com-

putational causal discovery methods to clarify the com-
plex etiology of PTS, in order to identify promising new
approaches for intervention. As detailed in the “Intro-
duction” section, knowledge appropriate for intervention
must be based on causal inference, and such inference
cannot be made with confidence from research using
observational, correlational methods. Since human etio-
logical experiments on PTS can so rarely be conducted,
we sought new methods to infer causes to inform inter-
vention. How may our results inform intervention
on PTS?
Our results revealed a network that includes five direct

putative causal factors for PTS: SNPs for the Histidine
Decarboxylase (HDC) and Mineralocorticoid Receptor
(MR) genes, startle low threat (acoustic startle response in
a low perceived threat condition during academy train-
ing), peritraumatic distress to critical incident exposure
during the first year of police service, and general symp-
tom severity at 12 months. These five direct causal factors
are influenced by a wide variety of indirect causal factors
on 83 pathways to PTS. Of the five direct causal factors,
three were found to influence a large proportion of the 83
pathways: general symptom severity at 12 months (47% of
paths), peritraumatic distress (42% of paths), and startle

low threat (35% of paths). Several indirect putative causal
variables were also found to influence a large proportion
of causal pathways, some influencing a greater proportion
of pathways than any direct cause. For example, work
adjustment on entry to police academy training influ-
enced 57% paths, childhood trauma influenced 22% of
paths, and general symptom severity on entry to training
influenced 18% of paths.
Regarding the relevance of this information for reveal-

ing promising intervention targets: optimally, interven-
tions would be available that can modify each of the five
direct putative causes, as they would thereby separate PTS
Sev from all its sources of causal influence (since all
indirect causes must exert their effect through at least one
direct causal factor). One cannot presume, however, that
all five causes are modifiable: and some—though modifi-
able—may have already exerted their effect on likelihood
of PTS at the time an intervention is considered (e.g.,
when delivered after the peritraumatic period, an inter-
vention designed to modify peritraumatic distress would
not be expected to change the likelihood of PTS).
Therefore, knowledge on indirect putative causes—espe-
cially those that participate in a large proportion of causal
paths—may provide useful knowledge on promising
intervention targets, and complement knowledge on
direct causes. As described in the method section, our
approach to integrating knowledge on indirect causes, by
examining the proportion of causal paths in which they
participate, is heuristically derived. Ultimately, knowledge
to inform intervention will require causal effect estima-
tion methods to determine unit change in outcome vari-
able per simulated unit change in (direct or indirect)
causal variable. Such methods, based on Pearl’s “Do Cal-
culus”1,15, have recently become available and offer pro-
mising avenues for future research.

Fig. 3 Rank order of variables with influence on greatest proportion of pathways to PTS Sev (time époque in parenthesis). Putative causes
participating in the greatest proportion of the 83 pathways to PTS Sev (within four “steps” or less), from the Global Causal Network Model.
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Examining the putative causes shown in Fig. 2 reveal
several biologically significant pathways to inform
understandings on the pathophysiology of PTS and reveal
promising intervention targets. The HDC gene, for
example, indicates a role for the histamine system. There
is evidence that histamines are involved in the regulation
of processes thought to be central to PTS including
arousal, sleep, inflammation, and central nervous system
response to provocation, including regulation of the
hypothalamic–pituitary–adrenal (HPA)-axis54,55. Con-
sistent with the results of a previously published study56,
our findings indicate that widely available antihistamine
agents may have promise for intervening on PTS. As
another example of a biologically significant result, with
corresponding intervention potential: the MR gene codes
for expression of the mineralocorticoid receptor. MR
receptors have a role in regulating the release of nor-
epinephrine in response to stress, and this release is
thought to be responsible for the consolidation of trau-
matic memory31,57–59. Agents that block the activity of
this system have been demonstrated to be efficacious for
PTS60,61.
Our findings on fear-potentiated startle reactions may

have particular relevance. Neurobiological systems
responsible for startle have been implicated in the etiology
of PTS for decades62–64. Startle responses are necessary
for survival: quickly orienting the brain towards sources of
threat, and preparing the body to quickly react to these
perceived threats with survival-preserving behavior. The
heightened startle responses and poor startle habituation
commonly found in individuals with PTS have been
described as indicators of dysfunctional fear learning,
contextual processing, and attentional biases towards
threat31,33,43,57,65.
It is noteworthy—as shown in Fig. 2 that startle reactions,

especially startle low threat, have broad “downstream”
influence on other variables leading to PTS and depression.
These “downstream” variables include peritraumatic dis-
tress, perceived stress, and global symptom severity: and,
indirectly, work adjustment and social adjustment. Startle
reactions in conditions of low threat would indicate a
neurobiological system primed to respond with survival-
preserving behavior to stimuli that are not objectively
threatening, and such a system would be guided by
attentional biases towards threat, described in previous
research65. Attentional biases toward threat can be highly
maladaptive, leading to misperception of neutral cues as
threatening and limiting the capacity to extinguish the fear
response to such cues, once learning occurs. Such atten-
tional biases would be expected lead to heightened levels of
distress in the peritraumatic period, and continuing levels
of perceived stress, mental health symptom severity, and
ongoing difficulties in social and work adjustment: con-
sistent with the results shown in Fig. 2.

As shown in Fig. 2, startle low threat and startle high
threat are influenced by “upstream” variables of history of
childhood trauma and previous psychopathology. Animal
studies have reported heightened startle responses and
poor startle habituation following repeated prior stres-
sors66,67 and our findings may indicate—consistent with
these previous studies—that the startle responses we
observed, were potentiated by repeated prior stress
exposures. Another interesting source of “upstream”
influence on startle is indicated by the path from the MR
gene to Fatty Acid Amine Hydrolase (FAAH) gene to
startle high threat. Such a path may have biological sig-
nificance as the endocannabinoid system has recently
been implicated in PTS and has strong regulatory rela-
tions to the sympathetic nervous system68,69. The FAAH
gene encodes a protein that hydrolyzes the endogenous
cannabinoids anandamide and 2-arachidonoylglycerol (2-
AG)70. Our findings highlight an important putative
causal relation between the endocannabinoid system, the
sympathetic nervous systems, startle, and PTS.
Our study offers unusual opportunities for untangling

complex causal relations and for yielding knowledge on
preventative intervention, as the data set included many
risk variables measured prior to trauma exposure. The
vast majority of studies on startle reactions and PTS, for
example, measured startle in subjects who were already
trauma exposed or who had already acquired PTS. In the
present study, startle was measured during police acad-
emy training, and prior to any reference critical incident
related to police duty. Our findings indicate that the
observed startle responses are putative causal factors—not
effects —of PTS, and thus convey opportunities to inter-
vene on PTS via intervention on startle. Police officer
candidates who display the patterns of startle response
observed in this study may be good candidates for pre-
ventative intervention, including administration of agents
that serve to attenuate the startle response71,72.
Another result with promise for preventative interven-

tion—given its pre-trauma measurement—is work
adjustment during police academy training. Work
adjustment is relatively easy to assess and—should such a
problem be revealed during academy training—police
officers could be offered more support in adjusting to
work, in the service of reducing their likelihood of
developing PTS during police duty. Work adjustment is
based on police officer reports of feeling inadequate at
work, impaired work performance, and days absent from
work around their entry to police duty.
Our findings can also help clarify the nature of the well-

described comorbidity between PTS and depression73,
which has also been reported in subjects from the sample
used in the present study74. Do symptoms of PTS and
depression emerge and persist independently; or do they
influence each-others’ expression? If there is dependence
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between them: what is its direction? Our findings indicate
that post-traumatic depression and PTS are related: PTS
is causal of depression; depression is not causal of PTS.
Our methods were able to determine directionality in this
context, by using the sound edge orientation procedure of
the PC algorithm. The capacity to determine the direc-
tionality of relationships is a particularly important
implication of our research. Our results indicate that
intervention on Depression cannot improve PTS, but
intervention on PTS can improve depression. Of course,
comorbid depression in a police officer should be treated,
but this treatment should not be expected to
improve PTS.
As described, although these results are intriguing, and

may eventually serve to advance the field, they were
determined using methods that have rarely been applied
in psychiatry, and so caution must be used in accepting
their veracity. Future experimental research—where pos-
sible—may be used to confirm results and—where not
possible—it will be important to replicate results using
similar methods with other observational data sets.
Additionally, PCCDP cannot (at its present configura-
tion), rule out the possibility that an unmeasured hidden
common cause may explain an observed causal relation-
ship in our model. At present, the methods employed
enable the consideration of far more variables (146) than
can possibly be considered using conventional methods
and common causes from these 146 measured variables
can safely be excluded. Our analyses do not, however, rule
out the possibility of confounding from unmeasured
variables. It is in principle possible to detect such effects
by using additional methodologies2,75, and this is an
avenue for future work. As described in the method sec-
tion, genetic data was only collected in a sub-sample of
subjects (n= 157) and therefore our findings on the
relationship between genes and behavioral measures are
only relevant for this sub-sample. Our methods also did
not use a diagnostic measure of PTSD, but rather used a
PTS symptom severity measure. Future research would
benefit from such diagnostic measures. We also hope that
the results presented may contribute to knowledge on
diagnostic classification related to trauma responses.
Finally, although our methods include highly rigorous
processes to support the generalizability of the resulting
models, our resulting models were not validated with an
independent sample of police officers. Should suitable
data sets become available, the generalizability of our
findings would be supported through validation with such
independent samples.

Conclusions
A diversity of variables—some representing processes

that are readily remediable—were identified as direct
causes of PTS in police officers. Other remediable causal

variables were found to influence a large proportion of the
causal paths. Knowledge of the set of direct putative
causes—and the putative causes with broad influence over
pathways—provide investigators with unique and valuable
knowledge to consider novel intervention strategies.
Obviously, experimental research would be very impor-
tant in the pursuit of such knowledge but, as detailed
previously, such research can rarely be conducted with
humans. Thus, the application of CCD methods may offer
new avenues to advance intervention on PTS.
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